Ask your own question, for FREE!
Mathematics 24 Online
OpenStudy (gold):

prove: sinx+cosx/tan^2x-1 = cos^2x/sinx-cosx

OpenStudy (gold):

\[\sin ^{4}x - \cos ^{4}x/ \tan ^{4}x -1 = \cos ^2x\]

OpenStudy (shadowfiend):

I'm going to look at the first equation for now. Is the second a different proof that you need to do? There are two things to keep in mind here. First off, remember when trying to prove these that you can work both sides (it will be easier). Secondly, remember that \(\tan x = \frac{\sin x}{\cos x}\), which means that \(\tan^2 x = \frac{\sin^2 x}{\cos^2 x}\). So, once we've determined that, we can first take \(\sin x - \cos x\) from the right and multiply it into the left: \[\begin{align} \frac{\sin x + \cos x}{\tan^2 x - 1} &= \frac{\cos^2 x}{\sin x - \cos x}\\ \frac{(\sin x + \cos x)(\sin x - \cos x)}{\tan^2 x - 1} &= \cos^2 x\\ \frac{\sin^2 x - \cos^2 x}{\tan^2 x - 1} &= \cos^2 x \end{align}\] You can then take \(\tan^2 x - 1\) and multiply it into the right: \[\begin{align} \frac{\sin^2 x - \cos^2 x}{\tan^2 x - 1} &= \cos^2 x\\ \sin^2 x - \cos^2 x &= \cos^2 x(\tan^2 x - 1) \end{align}\] Then we use the fact that \(\tan^2 x = \frac{\sin^2 x}{\cos^2 x}\) and multiply through by \(\cos^2 x\) on the right: \[\begin{align} \sin^2 x - \cos^2 x &= \cos^2 x(\tan^2 x - 1)\\ &=\cos^2 x \tan^2 x - \cos^2 x\\ &= \cos^2 x\frac{\sin^2 x}{\cos^2 x} - \cos^2 x\\ \sin^2 x - \cos^2 x = \sin^2 x - \cos^2 x \end{align}\] When we expand \(\tan^2 x\), we cancel out the \(\cos^2 x\) and we are left with the same expressions on both sides, which means we have proven the identity.

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
1UPSA: Happy new year
2 hours ago 2 Replies 0 Medals
uknownprttyfacekayla: Happy new years everyone stay safe and enjoy the new year i pray that everyone ha
5 hours ago 7 Replies 3 Medals
addison123456: HAPPYYY BDAYYYYY @jhaseker bestie for realllllll happy 16thh
22 hours ago 9 Replies 0 Medals
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!