Ask your own question, for FREE!
Mathematics
OpenStudy (gold):

prove: sinx+cosx/tan^2x-1 = cos^2x/sinx-cosx

OpenStudy (gold):

\[\sin ^{4}x - \cos ^{4}x/ \tan ^{4}x -1 = \cos ^2x\]

OpenStudy (shadowfiend):

I'm going to look at the first equation for now. Is the second a different proof that you need to do? There are two things to keep in mind here. First off, remember when trying to prove these that you can work both sides (it will be easier). Secondly, remember that \(\tan x = \frac{\sin x}{\cos x}\), which means that \(\tan^2 x = \frac{\sin^2 x}{\cos^2 x}\). So, once we've determined that, we can first take \(\sin x - \cos x\) from the right and multiply it into the left: \[\begin{align} \frac{\sin x + \cos x}{\tan^2 x - 1} &= \frac{\cos^2 x}{\sin x - \cos x}\\ \frac{(\sin x + \cos x)(\sin x - \cos x)}{\tan^2 x - 1} &= \cos^2 x\\ \frac{\sin^2 x - \cos^2 x}{\tan^2 x - 1} &= \cos^2 x \end{align}\] You can then take \(\tan^2 x - 1\) and multiply it into the right: \[\begin{align} \frac{\sin^2 x - \cos^2 x}{\tan^2 x - 1} &= \cos^2 x\\ \sin^2 x - \cos^2 x &= \cos^2 x(\tan^2 x - 1) \end{align}\] Then we use the fact that \(\tan^2 x = \frac{\sin^2 x}{\cos^2 x}\) and multiply through by \(\cos^2 x\) on the right: \[\begin{align} \sin^2 x - \cos^2 x &= \cos^2 x(\tan^2 x - 1)\\ &=\cos^2 x \tan^2 x - \cos^2 x\\ &= \cos^2 x\frac{\sin^2 x}{\cos^2 x} - \cos^2 x\\ \sin^2 x - \cos^2 x = \sin^2 x - \cos^2 x \end{align}\] When we expand \(\tan^2 x\), we cancel out the \(\cos^2 x\) and we are left with the same expressions on both sides, which means we have proven the identity.

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
karissafrazier: anyone wanna roleplay witsh me?
1 hour ago 0 Replies 0 Medals
Jane2711: @MochaBerries Here is the edit of Kenma
2 hours ago 18 Replies 2 Medals
Jimmyjohnjoe: i hope this is not spam it's for rylee88
4 hours ago 3 Replies 0 Medals
Tonycoolkid21: someone made this song UK drill type beat
4 hours ago 5 Replies 1 Medal
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!