Mathematics 29 Online
OpenStudy (anonymous):

Let U and V be subspaces of a vector space W. Prove that their intersection is also a subspace of W

OpenStudy (anonymous):

Let X be the intersection of U and V. 1) X closed under addition: Assume x in X and y in X. From this, we know x in U and y in U. But since we know that U is a subspace, x+y in U holds. Similarly, one can show that x+y in V and therefore x+y in X. So X is indeed closed under addition. 2) X closed under scalar multiplication: ------------------------------------------ Assume x in X and r in R. Again, we know x in U. Since U is a subspace, it is closed under scalar multiplication. Therefore, r*x in U holds. Also r*x in V holds with a similar argument. From this r*x in X follows. So X is closed under scalar multiplication. Therefore by subspace theorem, we're done. You can use the definitely of a vectorspace as well, but that's more tedious.

Latest Questions
Ja2p3rM3l0dy: draft for uzui tengen
3 hours ago 2 Replies 0 Medals
Countless7Echos: anddd finished :3 both w/ n w/out curtain/pole
3 hours ago 6 Replies 2 Medals
Countless7Echos: WIP of light study on different skin tones.
6 hours ago 1 Reply 0 Medals
xXAikoXx: FOR MY FELLOW STAYS FR : "aYE DOMINO"
10 hours ago 3 Replies 1 Medal
BBYGIRL: so how is everyone doing
1 day ago 0 Replies 0 Medals