Ask your own question, for FREE!
Mathematics 60 Online
OpenStudy (anonymous):

Revenue is given by R(q)=600q and cost is given by C(q)= 20000+3q^2 At what quantity, q, is the profit maximized?

OpenStudy (anonymous):

Profit is \[(revenue) - (cost)\]Let P(q) be the profit as a function of q. Then,\[P(q)=R(q)-C(q)=600q-20000-3q^2\]The extrema within a domain, if they exist, will be found at those values q such that,\[P'(q)=0\]Doing this, we have\[P'(q)=600-6q:=0 \rightarrow q=100\]The fact that the profit function is quadratic with negative coefficient on x^2 is enough to show that this is a parabola which is concave down. The extremum you find will therefore be maximal. Otherwise (in other situations where the geometry isn't clear, take the second derivative and test the point you found. If the second derivative at that point turns out negative, you have a maximum at that point. If it's positive, you have a minimum),

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
MAGABACK: ART!
9 minutes ago 5 Replies 0 Medals
danielfootball123: Is Donald trump a good president?
2 hours ago 92 Replies 6 Medals
Gucchi: chem help
13 hours ago 9 Replies 0 Medals
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!