Ask your own question, for FREE!
Mathematics 42 Online
OpenStudy (anonymous):

show that u(x,t)-sin(nx)e^(-n^(2)t) satisfies the heat equation df/dt = d^2f/dx^2 for any constant n? ok so what i think i have to do is find the partial and the second partial derivatives of the equation...then what do i do? show that u(x,t)-sin(nx)e^(-n^(2)t) satisfies the heat equation df/dt = d^2f/dx^2 for any constant n? ok so what i think i have to do is find the partial and the second partial derivatives of the equation...then what do i do? @Mathematics

OpenStudy (anonymous):

Then see if they are equal!

OpenStudy (anonymous):

so after solving both du/dt and d^2u/dx^2 i got them both to be -n^2sin(nx)e^(-n^(2)t)... is that what i am supposed to get?

OpenStudy (anonymous):

You have \(u(x,t)=\sin(nx)e^{-n^2t} \implies \frac{\partial u}{\partial t}=\sin(nx)(-n^2e^{-n^2t})=-n^2\sin(nx)e^{-n^2t}\). Now we should find the second partial derivative with respect to \(x\) and see if they are the same. \(\frac{\partial u}{\partial x}=n\cos(nx)e^{-n^2t} \implies \frac{\partial^2 u}{\partial x^2}=-n^2 \sin(nx)e^{-n^2t}.\) So, \(\frac{\partial^2 u}{\partial x^2}=\frac{\partial u}{\partial t}\) and therefore it satisfies the heat equation.

OpenStudy (anonymous):

Yeah!

OpenStudy (anonymous):

cool thanks AnwarA! :)

OpenStudy (anonymous):

You're welcome!

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
breiadabrattzz: Give me a define of the word social issues
2 hours ago 3 Replies 0 Medals
DonaldTrumpofQC: The Great Waffle Rebellion
3 hours ago 8 Replies 2 Medals
MAGABACK: Are these good grades?
5 hours ago 21 Replies 1 Medal
randogirl123: helpss
17 hours ago 17 Replies 1 Medal
DonaldTrumpofQC: QC Halloween Profile Picture requests
21 hours ago 3 Replies 1 Medal
Taku12: is it nessicary to learn formulations of 3x3 applications?
17 hours ago 28 Replies 2 Medals
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!