Ask your own question, for FREE!
Mathematics 16 Online
OpenStudy (anonymous):

Is x - 8 a factor of the function f(x) = -2x3 + 17x2 - 64? Explain. A. Yes. When the function f(x) = -2x3 + 17x2 - 64 is divided by x - 8, the remainder is zero. Therefore, x - 8 is a factor of f(x) = -2x3 + 17x2 - 64. B. No. When the function f(x) = -2x3 + 17x2 - 64 is divided by x - 8, the remainder is zero. Therefore, x - 8 is not a factor of f(x) = -2x3 + 17x2 - 64. C. Yes. When the function f(x) = -2x3 + 17x2 - 64 is divided by x - 8, the remainder is not zero. Therefore, x - 8 is a factor of f(x) = -2x3 + 17x2 - 64. D. No. When the function f(x) = -2x3 + 17x2 - 64 is divided

OpenStudy (campbell_st):

well the easy thing to do is use the factor theorem if (x - 8) is a factor then x = 8 should result in f(8) being zero.. so just substitute \[f(8) = -2(8)^3 + 17(8)^2 - 64\] hope this helps.

OpenStudy (anonymous):

So (x - 8) is a factor, and I just have to use Long Division of Polynomials to figure it out?

OpenStudy (campbell_st):

well yes... its a bit of a tedious process when you can use the factor theorem to prove it. I'd ask your teacher why you can't use the factor theorem to show it.

OpenStudy (anonymous):

OpenStudy (anonymous):

You guys rock! Thanks! :D

OpenStudy (campbell_st):

glad to help

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
RAVEN69: My drawing so far is actually fire
1 week ago 9 Replies 2 Medals
PureSoulless: is staying at your friend's house while you're homeless legal.
2 weeks ago 5 Replies 1 Medal
whyjustwhy: i did that one TV girl trend with blake (aka @ShadowKid3)
1 week ago 12 Replies 2 Medals
whyjustwhy: i did that one TV girl trend with blake (aka @shadowkid3)
2 weeks ago 3 Replies 0 Medals
whyjustwhy: yo guys he can watch me sleep now (ignore dora)
3 weeks ago 24 Replies 1 Medal
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!