Help me
If f(x) be a positive, continuous and differentiable on the interval (a,b). If $$lim_{x\rightarrow a^+}{f(x)=1} \ and \ lim_{x\rightarrow b^-}f(x)=3^{1/4}. Also f'(x)\ge f^3(x)+1/f(x), than$$ $$a.b-a\ge \frac{\pi}{4}$$ $$b. b-a\le\frac{\pi}{4}$$ $$c.b-a\le\frac{\pi}{24}$$ d. none of these. @hartnn
have u tried solving the given DE ?
nah, :(
say f(x) = y : \[\large \begin{align}y' &\ge y^3 + 1/y \\~\\\dfrac{dy}{dx} &\ge \dfrac{y^4+1}{y}\end{align}\]
since y=f(x) is positive in the region we are interested, you can do separate variables by "cross multiplying"
say f(x) = y : \[\large \begin{align}y' &\ge y^3 + 1/y \\~\\\dfrac{dy}{dx} &\ge \dfrac{y^4+1}{y}\\~\\ \dfrac{y}{y^4+1}dy&\ge dx\end{align}\]
integrate both sides
rest should be easy
here $$f(x)=\sqrt{tan2x}$$
\[\large \begin{align}y' &\ge y^3 + 1/y \\~\\ \dfrac{dy}{dx} &\ge \dfrac{y^4+1}{y}\\~\\ \dfrac{y}{y^4+1}dy&\ge dx\\~\\ \int_a^b\dfrac{y}{y^4+1}dy&\ge \int_a^b dx\\~\\ \frac{1}{2} \arctan(y^2) \Bigg|_a^b&\ge x\Bigg|_a^b\\~\\ \frac{1}{2}( \arctan((3^{1/4})^2) - \arctan(1^2)) \Bigg|_a^b&\ge b-a\\~\\ \frac{1}{2}( \arctan(\sqrt{3}) - \arctan(1))&\ge b-a\\~\\ \frac{1}{2}( \frac{\pi}{3} - \frac{\pi}{4} ) &\ge b-a\\~\\ \end{align}\]
Join our real-time social learning platform and learn together with your friends!