Help with some vector stuff (Calc III)
\[r(t)=3e^t<\cos(t),\sin(t),1>\] \[r'(t)=3e^t<-\sin(t),\cos(t),0>\] \[r''(t)=3e^t<-\cos(t),-\sin(t),0>\] \[||r't||=3e^t\]
Doing dot product with this 3e^t hanging aroung is really throwing me off
$$ \vec{a} = {a_T} \vec{T} + a_N \vec{N} $$
what do you mean by that
$$ \large \rm {\vec{a} = {a_T} \vec{T} + a_N \vec{N} \\ \, \\ a_T = v' = \frac{\vec{ r}'(t) \cdot \vec{r} '' (t) }{\|r'(t) \|} \\ \, \\ a_N = \frac{ \| \vec{ r}'(t) \times \vec{ r}''(t) \| } { \| \vec{ r}'(t) \| } }$$
These equations are supplied here. http://tutorial.math.lamar.edu/Classes/CalcIII/Velocity_Acceleration.aspx
$$a_T = \| \vec{v}(t) \|' = \frac{\vec{ r}'(t) \cdot \vec{r} '' (t) }{\|r'(t) \|} \\ \, \\ a_T = \frac{19e^{2t} }{ \sqrt{19} e^{t} } $$
I got it, thank you @owen3
Join our real-time social learning platform and learn together with your friends!