Differential Equation
\[y' = 3x-y\] \[I(x) = e^{\int\limits dx} = e^x\]
\[\int\limits [e^ty]' = \int\limits e^x(3x)\]
$$ y' +y = 3x$$
\[e^ty= \int\limits e^x(3x) dx\]
And for that integral i tried solving with Integration by parts, but get stuck...
\[u = x \rightarrow du = \frac{ 1 }{ x }\] \[dv = e^xdx \rightarrow v=e^x\] \[ye^x = 3[xe^x- \int\limits \frac{ e^x }{ x }]\]
Do I have to do IBP again?
derivative of x is ??
Oh shoot. Thanks haha xD
\[ y' +1y = 3x \\ ~ \\ e^{\int 1 dx} ( y' +1y) = e^{\int 1 dx} 3x \\ ~ \\ e^{x} ( y' +1y) = e^{x} 3x \\ ~ \\ e^{x}y' +e^{x}y = 3x e^{x} \\ ~ \\ (e^{x}y)' = 3x e^{x} \\ ~ \\ \int (e^{x}y)'~dx = \int 3x e^{x} ~dx \\ ~ \\ e^{x}y = \int 3x e^{x} ~dx \\ ~ \\ e^{x}y = 3xe^x -3e^x +c \\ ~ \\ y = \frac{3xe^x -3e^x +c}{e^x} \\ ~ \\ y = 3x - 3 + \frac{c}{e^x} \]
Your work looks good. As Nnesha pointed out, just take the derivative of x. :)
Join our real-time social learning platform and learn together with your friends!