Jbaena1:

logarithmic functions to simplify the expression

5 months ago
Jbaena1:
5 months ago

Nnesha:

Basic rules: Product: \[\large\rm \log_b(\color{red}{x }\cdot \color{blue}{y}) = \log_b\color{red}{ x} + \log_b \color{blue}{y}\] Quotient: \[\large\rm \frac{ \log_b\color{red}{ x} }{ \log_b \color{blue}{y} }= log_b\color{red}{ x} - log_b\color{blue}{ y}\]

5 months ago
Nnesha:

\[\frac{ \log_7 \color{Red}{70} - \log_7\color{blue}{{35}}}{ \log_7 5}\] apply the quotient rule for top part

5 months ago
Jbaena1:

Oh ok thanks

5 months ago
jhonyy9:

{\displaystyle \log _{b}\!{\frac {x}{y}}=\log _{b}x-\log _{b}y} @Nnesha pardon but i know this in this way

5 months ago
jhonyy9:

log_b x - log_b y = log_b (x/y)

5 months ago
Nnesha:

yes. Thanks. typo Quotient: \[\large\rm \log_b \frac{\color{red}{ x} }{ \color{blue}{y} }= log_b\color{red}{ x} - log_b\color{blue}{ y}\] **

5 months ago
jhonyy9:

@Jbaena1 do you undestand the differens ?

5 months ago
jhonyy9:

on numerator there are log_7 70 -log_7 35 = log_7 (70/35) = log_7 2

5 months ago
bm717:

Ew. Logs.

5 months ago