Jbaena1:

logarithmic functions to simplify the expression

3 weeks ago
Jbaena1:
3 weeks ago

Nnesha:

Basic rules: Product: \[\large\rm \log_b(\color{red}{x }\cdot \color{blue}{y}) = \log_b\color{red}{ x} + \log_b \color{blue}{y}\] Quotient: \[\large\rm \frac{ \log_b\color{red}{ x} }{ \log_b \color{blue}{y} }= log_b\color{red}{ x} - log_b\color{blue}{ y}\]

3 weeks ago
Nnesha:

\[\frac{ \log_7 \color{Red}{70} - \log_7\color{blue}{{35}}}{ \log_7 5}\] apply the quotient rule for top part

3 weeks ago
Jbaena1:

Oh ok thanks

3 weeks ago
jhonyy9:

{\displaystyle \log _{b}\!{\frac {x}{y}}=\log _{b}x-\log _{b}y} @Nnesha pardon but i know this in this way

3 weeks ago
jhonyy9:

log_b x - log_b y = log_b (x/y)

3 weeks ago
Nnesha:

yes. Thanks. typo Quotient: \[\large\rm \log_b \frac{\color{red}{ x} }{ \color{blue}{y} }= log_b\color{red}{ x} - log_b\color{blue}{ y}\] **

3 weeks ago
jhonyy9:

@Jbaena1 do you undestand the differens ?

3 weeks ago
jhonyy9:

on numerator there are log_7 70 -log_7 35 = log_7 (70/35) = log_7 2

3 weeks ago
bm717:

Ew. Logs.

3 weeks ago