Practice
Let's expand and simplify each of the logarithmic expressions one by one. 1. **log₃(8x²y)** Using the properties of logarithms: \[ \log₃(8x²y) = \log₃(8) + \log₃(x²) + \log₃(y) \] Further expanding: \[ \log₃(8) = \log₃(2³) = 3\log₃(2) \] and, \[ \log₃(x²) = 2\log₃(x) \] Therefore, the complete expansion is: \[ \log₃(8x²y) = 3\log₃(2) + 2\log₃(x) + \log₃(y) \] 2. **log((x/9)⁵)** Using the power and quotient rules: \[ \log((x/9)⁵) = 5\log(x/9) = 5(\log(x) - \log(9)) \] Further expanding \(\log(9)\): \[ \log(9) = \log(3²) = 2\log(3) \] Therefore, the final expression is: \[ \log((x/9)⁵) = 5\log(x) - 10\log(3) \] 3. **log_b(b/x)** Using the properties of logarithms: \[ \log_b(b/x) = \log_b(b) - \log_b(x) \] Since \(\log_b(b) = 1\), we have: \[ \log_b(b/x) = 1 - \log_b(x) \] 4. **log(x²y³/z⁴)** Using the properties of logarithms: \[ \log(x²y³/z⁴) = \log(x²y³) - \log(z⁴) \] Further expanding: \[ \log(x²y³) = \log(x²) + \log(y³) = 2\log(x) + 3\log(y) \] and, \[ \log(z⁴) = 4\log(z) \] Therefore, the complete expansion is: \[ \log(x²y³/z⁴) = 2\log(x) + 3\log(y) - 4\log(z) \] 5. **log₄(4√(3x³))** Recall that \(4\sqrt{(3x³)} = (3x³)^{1/4}\) and \(4 = 4^{1}\): \[ \log₄(4√(3x³)) = \log₄((3x³)^{1/4}) + \log₄(4) \] Simplifying it gives: \[ \log₄(4) = 1 \] and, \[ \log₄((3x³)^{1/4}) = \frac{1}{4} \log₄(3x³) = \frac{1}{4} (\log₄(3) + 3\log₄(x)) \] Thus, the entire expression simplifies to: \[ \log₄(4√(3x³)) = 1 + \frac{1}{4} \log₄(3) + \frac{3}{4} \log₄(x) \] 6. **log₂(√(m/n²))** Using the property of logarithms: \[ \log₂(√(m/n²)) = \log₂((m/n²)^{1/2}) = \frac{1}{2} \log₂(m/n²) \] This expands to: \[ \frac{1}{2} (\log₂(m) - \log₂(n²)) = \frac{1}{2} (\log₂(m) - 2\log₂(n)) = \frac{1}{2} \log₂(m) - \log₂(n) \] Thus, the final expansions and simplifications are as follows: 1. \(\log₃(8x²y) = 3\log₃(2) + 2\log₃(x) + \log₃(y)\) 2. \(\log((x/9)⁵) = 5\log(x) - 10\log(3)\) 3. \(\log_b(b/x) = 1 - \log_b(x)\) 4. \(\log(x²y³/z⁴) = 2\log(x) + 3\log(y) - 4\log(z)\) 5. \(\log₄(4√(3x³)) = 1 + \frac{1}{4}\log₄(3) + \frac{3}{4}\log₄(x)\) 6. \(\log₂(√(m/n²)) = \frac{1}{2}\log₂(m) - \log₂(n)\)
Join our real-time social learning platform and learn together with your friends!