Ask your own question, for FREE!
Mathematics 12 Online
OpenStudy (anonymous):

What is the difference between a factor of a quadratic equation and a zero of a quadratic equation?  

OpenStudy (shadowfiend):

Generally speaking, a factor is the component of a quadratic equation that gives you a zero. For example, if you have the quadratic equation \(x^2 - 4\), you can *factor* it into two parts: \[x^2 - 4 = (x + 2)(x - 2)\] \(x + 2\) and \(x - 2\) are the *factors*, and they give you the two *zeros*, which are 2 and -2. A zero is the value of x at which the parabola that the quadratic formula describes crosses the y axis (i.e., has a value of 0). A factor is a part of the equation. Multiplying all the factors together gives you the original equation.

OpenStudy (anonymous):

Shadowfiend is correct, with one small "oops." The zeros are where the curve of the equation crosses the X-axis, not the y-axis. So in the example above, the parabola crosses the x-axis at 2 and -2; it crosses the y-axis at -4. (The constant term of a polynomial is always the y-intercept.)

OpenStudy (shadowfiend):

Hah! Yes indeed, where it crosses the X axis. Thanks for the catch, LBickford :)

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
Countless7Echos: Ah trying out the whole T.V girl drawing :p (I love drawing eyes)
1 hour ago 7 Replies 5 Medals
kaelynw: starting to draw a hand
1 day ago 16 Replies 2 Medals
Twaylor: Rate it :D (Took 2 days)
2 days ago 7 Replies 0 Medals
XShawtyX: Art, Short Writing Assignment: Imagining Landscapes
2 hours ago 7 Replies 1 Medal
XShawtyX: Chemistry, Help ud83dude4fud83cudffe
3 days ago 13 Replies 1 Medal
kaelynw: tried a lil smt, the arm is off but i like the other stuff
3 days ago 27 Replies 3 Medals
kaelynw: art igg
3 days ago 14 Replies 1 Medal
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!