find 3 coeff. b1, b2, b3 E of R3 such that: sin(t)cos(2t) = b1sin(t) + b2sin(2t) + b3sin(3t). i just need a clue of the formula i need to use. thx alot.
It looks like you'd need to check out one of the several double angle formulas for cos(2t) and it should become pretty simple at that point.
that's what i thought, but it's a linear algebra class so I think it's a little tougher than that.
waaaa never mind i think it's that simple.
So, I'm assuming you're being asked to prove that sin(t)cos(2t) is in the span of {sin(t), sin(2t), sin(3t)} or something similar? Yeah, I think in this case it really is going to be simple. Sometimes with Linear Algebra problems are almost so simple that they look hard! :)
Of course the real problem is that then there is a problem that looks really simple, but ends up being really difficult and it's not always clear which is which. :)
(sin t)(cos (2t)) = (sin t)(1 – 2(sin t)^2) = sin t – 2 (sin t)^3. sin(3t) =sin (2t + t) = sin (2t) cos (t) + cos (2t) sin(t) = … = 3sin t – 4(sin t)^3. sin(2t) = 2(sin t)(cos t). sin (t) = sin (t). So now notice the Left Hand Side has no cosines. This suggests letting b2 = 0. Notice that the Left Hand Side has coefficient -2 on the cubic term. This suggests letting b3 = ½. But if you make b3 equal to 1/2, then it contributes 3*(1/2) to the coefficient of sin t. To compensate, we should let b1 be -1/2. So (-1/2, 0, 1/2) is the solution.
Or is a solution, I'm not sure that it's unique.
thanks a lot i verified my answer and it's for sure correct.
cool
Join our real-time social learning platform and learn together with your friends!