Mathematics 91 Online OpenStudy (waheguru):

is there a special rick or is it just trial and error to solve this porblem OpenStudy (waheguru): OpenStudy (waheguru):

it would take a really long time to find he asnwer by trial and answer jimthompson5910 (jim_thompson5910): OpenStudy (anonymous):

Interesting question. Here's how I tackled it:Look at the first few 3 digit numbers.100101102103104105106107108109They all have the same first two digits, but different last digits. You'll notice that exactly one of these numbers is upright. You'll find the same thing for 110 through 119. I can keep going unless the sum of the first two digits is greater than 9. For example, any number with 67 as the first two digits can never be upright because 6+7 is a two digits number.So to start counting upright numbers, add up all the possible 2 digit combinations you can get. you can use 10 through 99, so that's 90 possible two digit pairs. Now you need to subtract off the pairs that don't work, like 67. 10, 11, 12, 13, ... , 18 all work, but 19 doesn't. That's 9 upright numbers. 20, 21, ... , 27 all work, but 28 and 29 don't. That's 8 more upright numbers. 90 works, but 91, 92, ... , 99 don't. That's just one more upright number. See the pattern? So find 1+2+3+4+5+6+7+8, and you have your answer. jimthompson5910 (jim_thompson5910):

you have the right idea pmilano, but you fell into the trap that there's a number in the range of 190 to 199 when there isn't one OpenStudy (anonymous):

By the way, the fast way to add the numbers 1 through 8 (or, more generally, 1 through n) is by using the formula (n)(n+1)/2 So 8(8+1)/2 = 36 OpenStudy (anonymous):

Thanks jim. OpenStudy (anonymous):

my answer is D)45. There is actually a pattern if you try to list down the first numbers. Starting at 1__, there are 9 possible answers. As you move up to the next hundreds digit, you decrease that number by one, because you can't have a sum of more than 9. 9+8+7+...+2+1 = 45 OpenStudy (anonymous):

I actually realized that before I posted but didn't proof read my post well enough (hence my correct answer and incorrect counting). jimthompson5910 (jim_thompson5910):

My bad, I was ignoring zero Start with the range 100-199 and moving to the next 200-299, etc, the following upright numbers are found in the tens digits listed below 0, 1, 2, 3, 4, 5, 6, 7, 8 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6 0, 1, 2, 3, 4, 5 0, 1, 2, 3, 4 0, 1, 2, 3 0, 1, 2 0, 1 0 So there are 45 here OpenStudy (waheguru):

i am getting 36? OpenStudy (anonymous):

Here is another method lol (incase you didnt have enough) When the last digit is 'n', you want to ask yourself how many solutions are there to: x + y = n where x and y are non-negative integers? For example, if n was 3, then these are the possible solutions for x and y: x = 0, y = 3 x = 1, y = 2 x = 2, y = 1 x = 3, y = 0 These correspond to the three digits numbers: 033 123 213 303 Of course we would discard the '033' case. Anywhos, the equation that gives you the number of solutions to "x + y = n" is: $\left(\begin{matrix}n+2-1 \\ 2-1\end{matrix}\right) = \left(\begin{matrix}n+1 \\ 1\end{matrix}\right)$ We need to do this for n = 1, 2, 3,....,9, while remembering to not count the case of the first digit being 0. So we end up with: $\left(\begin{matrix}2 \\ 1\end{matrix}\right)+\left(\begin{matrix}3 \\ 1\end{matrix}\right)+\left(\begin{matrix}4 \\ 1\end{matrix}\right)+\ldots +\left(\begin{matrix}10 \\ 1\end{matrix}\right)-9$$= 2+3+4+\ldots+10-9 = 1+2+3+\ldots+9 = 45$ OpenStudy (anonymous):

First set of numbers: 101,112,123,134,145,156,167,178,189 ---> 9 numbers. For 2__, that is one less than the 1 hundreds because u can only use 0-7 for the 2nd digit. The last possible number is 909, the only number in the 9 hundreds.

Latest Questions zay1: 2 + 2 ?
41 minutes ago 1 Reply 1 Medal Demonwolf: I finally decided to share these with other people though I'm not looking for someone to tell me I did good or anything.
22 minutes ago 7 Replies 2 Medals hayden34525: who likes country music b/c i do
38 minutes ago 15 Replies 2 Medals tireking1: ummmmm i think the sunn
37 minutes ago 12 Replies 0 Medals xcoledd1: helpud83dudc80ud83dudc80ud83dudc80ud83dudc40ud83dudc40ud83dudc40
34 minutes ago 11 Replies 0 Medals OLIVER69: I've made another poem and I'm stuck on a good name for it. Feedback and name suggestions are welcome.
23 minutes ago 7 Replies 2 Medals SavageJErry: do anyone know who skarlord is ion
1 hour ago 3 Replies 1 Medal officialljennie: Crumb, ava, mak and bunny. If y'all see this. Gimme ur discord if you have cus im not gonna be using this site.
3 hours ago 2 Replies 0 Medals rose12345: help needed
39 minutes ago 5 Replies 1 Medal rose12345: math help needed
9 hours ago 3 Replies 3 Medals