Correction Time.

I knw the answer is a Bit wrong.

\[y^\frac{4}{3}81^\frac{1}{3}y^\frac{5}{3}=y^\frac{3}{3}y^\frac{1}{3}(3^4)^\frac{1}{3}y^\frac{3}{3}y^\frac{2}{3}\]

\[y^1y^\frac{1}{3}3^\frac{4}{3}y^1y^\frac{2}{3}\]

in Radicals? This is the second one, im cmming in a sec.

\[y \cdot y \cdot 3^\frac{3}{3}\cdot 3^\frac{1}{3} \cdot y^\frac{1}{3}y^\frac{2}{3}=y^2\cdot 3 \cdot 3^\frac{1}{3} y^\frac{1+2}{3}\]

\[3y^2\cdot 3^\frac{1}{3}\cdot y^1=3y^3 \sqrt[3]{3}\]

saifoo do you see that you just missed up on that one exponent right?

Yes, Right. Thanks! ^.^

Let me try the first one again, like u did, then i will let u know!

\[\sqrt[3]{a}(\sqrt[3]{3a^2}+\sqrt[3]{81a^2})=\sqrt[3]{a \cdot 3a^2}+\sqrt[3]{a \cdot 81a^2}\] \[=\sqrt[3]{3a^3}+\sqrt[3]{81a^3}=\sqrt[3]{3}a+\sqrt[3]{3^4}a=\sqrt[3]{3}a+\sqrt[3]{3^3}\sqrt[3]{3}a=\sqrt[3]{3}a+3\sqrt[3]{3}a\]

WOW! u r simply grat.

Great*

Join our real-time social learning platform and learn together with your friends!