Ask your own question, for FREE!
Mathematics 16 Online
OpenStudy (anonymous):

Two basketball players are essentially equal in all respects. (They are the same height, they jump with the same initial velocity, etc.) In particular, by jumping they can raise their centers of mass the same vertical distance, H (called their "vertical leap"). The first player, Arabella, wishes to shoot over the second player, Boris, and for this she needs to be as high above Boris as possible. Arabella jumps at time t=0, and Boris jumps later, at time t_R (his reaction time). Assume that Arabella has not yet reached her maximum height when Boris jumps.

OpenStudy (nowhereman):

Calculate a formula for their jump heights depending on the time and look at the derivative of the difference to see, when Arabella's height is maximal in relation to Boris.

OpenStudy (anonymous):

There's actually no question posted here, just a series of statements. I assume you want to know, "when should Arabella release the ball"?

OpenStudy (anonymous):

Arabella's height is given by:\[s_{A}(t)=x _{0}+v_{0}t-\frac{1}{2} g t^2\]Where x0 is the height of her center of mass, v0=initial velocity of her jump, g is gravity and t is time. Boris', position function is:\[s_{B}(t)=x_{0}+v_{0}(t-R)-\frac{1}{2} g (t-R)^2\] Where R is his reaction time. We want to maximize the difference in Arabella's and Boris' heights. That is we want to find the max of:\[s_{A}(t)-s_{B}(t)=(x _{0}+v_{0}t-\frac{1}{2} g t^2)-(x_{0}+v_{0}(t-R)-\frac{1}{2} g (t-R)^2)\]Simplifying:\[=v_{0}R-\frac{1}{2} g t^2-\frac{1}{2}g(t^2-2tR+R^2)=v_{0}R- g t^2+gtR-\frac{1}{2}gR^2\]Now we need to use calculus to maximize this function.

OpenStudy (anonymous):

Let's find the critical values of this function by taking it's derivative (keeping in mind that v0, R and g are all constants) and setting it equal to zero:\[0=gR-2 g t\]This gives:\[t=\frac{1}{2}R\]We note that this critical value occurs at a maximum (one way to see this is using the second derivative test which is equal to -2g; thus the function is concave downward). Arabella should release the ball at time t=(1/2)R

OpenStudy (anonymous):

Actually, this answer is wrong. The best Arabella can do is shoot the ball at t=R. If you're curious why, ask.

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
AsianPanda08: What should i eat for dinner tonight? I can't choose
48 minutes ago 51 Replies 2 Medals
Nina001: Trying 2 figure out what is the square root of 8746685
1 hour ago 23 Replies 2 Medals
SnowyBreaks: Is it bad to lose 3.8 pounds in less than 2 days?
47 minutes ago 42 Replies 0 Medals
kaelynw: tried a lil smt, the arm is off but i like the other stuff
4 hours ago 8 Replies 2 Medals
laylasnii13: Who wanna write or make a song with me???
4 hours ago 8 Replies 0 Medals
kaelynw: art igg
12 hours ago 13 Replies 2 Medals
XShawtyX: Art
1 day ago 6 Replies 0 Medals
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!