Ask your own question, for FREE!
Mathematics 11 Online
OpenStudy (anonymous):

Suppose the first term of a geometric sequence is multiplied by a nonzero constant, c. What happens to the following terms in the sequence? What happens to the sum of this geometric sequence? (This question has one right answer.) Give an example of a geometric sequence to illustrate your reasoning. (Many answers are possible.)

OpenStudy (anonymous):

the next terms in the sequence will be multiplied by c, but the common ratio is still the same... so let m,n,o,p,.... be the gometric sequence with common ratio r. thus the sequence cm,cn,co,cp,...... will also have the common ratio r. so the sum will be\[S_{n}=\frac{ a_1r^n-a_1 }{ r-1 } = \frac{ cmr^n-cm }{ r-1 }=c\frac{ mr^n-m }{ r-1 }\]. take note that the first factor is c and the second is the sum of the sequence m,n,o,p,.....

OpenStudy (anonymous):

so the sum of the sequence m,n,o,p,..... when multiplied by c gives the sum of the sequence cm,cn,co,cp,......

OpenStudy (anonymous):

example..... 1,3,9,27, here, r=3. let the multiplier be 4. then the sequence 4, 12,36,108, has still the common ratio 3. for 1,3,9,27, \[S=\frac{ 1(3)^4-1 }{ 3-1 }=80/2=40\] for 4,12,36,108\[S=\frac{ 4(3)^4 -4 }{ 3-1 }=320/2 = 160\] thus it was shown

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
HeyItsAlicia: Why was questioncove not working??
3 hours ago 2 Replies 1 Medal
Countless7Echos: Ah trying out the whole T.V girl drawing :p (I love drawing eyes)
13 hours ago 14 Replies 6 Medals
kaelynw: starting to draw a hand
2 days ago 17 Replies 2 Medals
Twaylor: Rate it :D (Took 2 days)
6 days ago 7 Replies 0 Medals
XShawtyX: Art, Short Writing Assignment: Imagining Landscapes
2 days ago 9 Replies 1 Medal
XShawtyX: Chemistry, Help ud83dude4fud83cudffe
1 week ago 13 Replies 1 Medal
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!