Solve for x. -ax + 3b > 5 x > the quantity 3 times b minus 5 all over negative a x > the quantity 5 minus 3 times b all over negative a x < the quantity 3 times b plus 5 all over negative a x < the quantity negative 3 times b plus 5 all over negative a
you cannot solve this
\[-ax+3b>5\] \[-ax>5-3b\] divide by \(-1\) get \[ax<3b-5\] but you cannot go further
\[x<\frac{ 3b-5 }{ a }\] Yes you can @satellite73
the reason you cannot divide both sides by \(a\) is because \(a\) is a variable, and could be either positive or negative if it is positive you leave the inequality alone if it is negative, you have to switch the inequality where does this question come from?
@TheSmartOne like hell you cannot divide an inequality by a variable
Ok.
@luckyjeans please tell me where this question comes from? an idiot math teacher, or an idiot on line system, like FLVS
But 5-3b=-3b+5 right??
oops yes, you are right, they are the same still want to know the origin of this question
oh and then you divided by -1 nevermind...
same here...
\[\huge \begin{array}l\color{red}{\normalsize\text{w}}\color{orange}{\normalsize\text{h}}\color{#9c9a2e}{\normalsize\text{a}}\color{green}{\normalsize\text{t}}\color{blue}{\normalsize\text{ }}\color{purple}{\normalsize\text{i}}\color{purple}{\normalsize\text{s}}\color{red}{\normalsize\text{ }}\color{orange}{\normalsize\text{w}}\color{#9c9a2e}{\normalsize\text{r}}\color{green}{\normalsize\text{o}}\color{blue}{\normalsize\text{n}}\color{purple}{\normalsize\text{g}}\color{purple}{\normalsize\text{ }}\color{red}{\normalsize\text{w}}\color{orange}{\normalsize\text{i}}\color{#9c9a2e}{\normalsize\text{t}}\color{green}{\normalsize\text{h}}\color{blue}{\normalsize\text{ }}\color{purple}{\normalsize\text{t}}\color{purple}{\normalsize\text{h}}\color{red}{\normalsize\text{i}}\color{orange}{\normalsize\text{s}}\color{#9c9a2e}{\normalsize\text{ }}\color{green}{\normalsize\text{q}}\color{blue}{\normalsize\text{u}}\color{purple}{\normalsize\text{e}}\color{purple}{\normalsize\text{s}}\color{red}{\normalsize\text{t}}\color{orange}{\normalsize\text{i}}\color{#9c9a2e}{\normalsize\text{o}}\color{green}{\normalsize\text{n}}\color{blue}{\normalsize\text{?}}\color{purple}{\normalsize\text{}}\end{array}\]
Join our real-time social learning platform and learn together with your friends!