Ask your own question, for FREE!
Mathematics 29 Online
OpenStudy (anonymous):

Need help with calc 3... Let P(x0,y0,z0) lie on the unit sphere: x^2+y^2+z^2 = 1. Show that the equation of the plane, (p), containing point P with normal vector OP is: x0x +y0y + z0z = 1 I got as far as assuming point O is (x,y,z) and vector OP to be .

OpenStudy (anonymous):

@nerd94 @babygirl180

OpenStudy (ilovecake):

Do you know what to do?

OpenStudy (anonymous):

I think i'm supposed to confirm the equation of the plane with the given point P?

OpenStudy (anonymous):

Let \(F(x,y,z)=x^2+y^2+z^2\), then \[\nabla F(x,y,z)\bigg|_{x=x_0,\,y=y_0,\,z=z_0}=\langle2x_0,2y_0,2z_0\rangle\] is the gradient vector to the surface at \((x_0,y_0,z_0)\). The tangent plane is described by the equation, \[\begin{align*}\langle2x_0,2y_0,2z_0\rangle\bullet\langle x-x_0,y-y_0,z-z_0\rangle&=0\\\\ x_0(x-x_0)+y_0(y-y_0)+z_0(z-z_0)&=0 \end{align*}\]

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
DonaldTrumpofQC: How do I open google.com, but as an about:blank window?
2 hours ago 2 Replies 0 Medals
DonaldTrumpofQC: Today's Wordle Answer u2014October 5
5 hours ago 1 Reply 0 Medals
DonaldTrumpofQC: Today's Wordle Answer u2014October 5
5 hours ago 3 Replies 0 Medals
DonaldTrumpofQC: Today's Wordle hints and answer u2014October 5, 2025
5 hours ago 0 Replies 0 Medals
Countless7Echos: owa art block is hitting me hard.. but hey wip for sum animation yayy
8 minutes ago 9 Replies 3 Medals
Gdub08: Math again
20 hours ago 36 Replies 1 Medal
Gdub08: Math help
21 hours ago 8 Replies 1 Medal
Gdub08: Can somebody solve this?...
1 day ago 3 Replies 1 Medal
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!