For fun
Which of the following are eigenpairs (λ,x) of the 2×2 zero matrix: \[\left[\begin{matrix}0 & 0 \\ 0 & 0\end{matrix}\right]=\]where \[\chi \neq0\]
\[\left[\begin{matrix}0 & 0 \\ 0 & 0\end{matrix}\right]\chi= \lambda \chi\]where \[\chi \neq0\]
A. \[(1,\left(\begin{matrix}0 \\ 0\end{matrix}\right))\]B.\[(0,\left(\begin{matrix}1 \\ 0\end{matrix}\right))\]C\[(0,\left(\begin{matrix}0 \\ 1\end{matrix}\right))\]D\[(0,\left(\begin{matrix}-1 \\ 1\end{matrix}\right))\]E\[(0,\left(\begin{matrix}1 \\ 1\end{matrix}\right))\]F\[(0,\left(\begin{matrix}0 \\ 0\end{matrix}\right)\]
\[\left[\begin{matrix}0 & 0 \\ 0 & 0\end{matrix}\right]\chi= \lambda \chi\]where \[\chi \neq0\] Notice that the left hand side evaluates to zero vector no matter what the vector \(\chi \) is, so it follows that \(\lambda = 0\)
yea
i know the answers actually so just for fun :)
pick the options which are eigenpairs
By definition, eigenvector cannot be zero, so the last option can be eliminated
you mean first and last, both are 0
Ahh right, first and last options are eliminated
remaining all options look good to me!
That's correct!
yaay!
Join our real-time social learning platform and learn together with your friends!