All exponent rules? Adding, subtracting, multiplying, dividing, etc...
You can only add and subtract like terms, meaning each term has the same variables to the same power. For example you can add and subtract \(2x^4\) and \(-6x^4\) by adding or subtracting the coefficients and leaving the exponents the same. Addition \[2x^4+(-6x^4)=-4x^4\] Subtraction \[2x^4-(-6x^4)=8x^4\]
With multiplication and division, the exponents change. Multiplication (multiply coefficients, add exponents) \[x^mx^n=x^{m+n}\] Example \[(8x^5y^7)(4x^3y^2)=32x^{5+3}y^{7+2}=32x^8y^9\] Division (divide coefficients, subtract exponents) \[\frac{ x^m }{ x^n }=x^{m-n}\] Example\[\frac{ 8x^5y^7 }{ 4x^3y^2 }=2x^{5-3}y^{7-2}=2x^2y^5\]
Power to a power (multiply the exponents) \[(x^m)^n=x^{mn}\] Example \[(x^3y^5)^2=x^{3*2}y^{5*2}=x^6y^{10}\] Negative exponents (take the reciprocal, change the exponent to positive) \[x^{-m}=\left( \frac{ 1 }{ x } \right)^m\] Example \[(3x)^-5=\left( \frac{ 1 }{ 3x } \right)^5\] \[\left( \frac{ 1 }{ 2 } \right)^{-3}=2^3=8\] Anything to the 0 power is 1. \[(x^4+7)^0=1\] \[5(x^6y^3)^0=5*1=5\]
Rational exponents / Radicals \[\sqrt[n]{x^m}=x^\frac{ m }{ n }\] Example \[\sqrt{3x}=(3x)^\frac{ 1 }{ 2 }\] \[\sqrt[4]{(12x)^5}=(12x)^\frac{ 5 }{ 4 }\]
Thanks! @peachpi
Join our real-time social learning platform and learn together with your friends!