Please help me with Algebra 2 :) will give both fan and medal.
can u copy and paste the qustion
not the answers
Sure, the question says 2x²+x+2=0
\(\color{#000000 }{ x=\displaystyle \frac{ -1\pm\sqrt{1^2-4\cdot 2 \cdot 2 \color{white}{|}} }{2\cdot 2} }\) (Via the quadratic formula)
simplify, everything you could, and be aware that \(\sqrt{-b}=i\sqrt{b\color{white}{~|}}\)
That's the question and answers @alivejeremy
Okay, thank you :) I'll try to work it out. Thank you very much! @SolomonZelman
Would it be A or B? I just tried working part of it
I think it's A.
the square root has \(\pm\), and if you want to know why I can post an explanation:)
(In this case does, but not always)
Yes please :)
Suppose you are solving the equation \(\color{#000000 }{ \displaystyle x^2-1=8 }\) When you add 1 to both sides you get, \(\color{#000000 }{ \displaystyle x^2=9 }\) And then you take the square root of both sides (right?) Most people think that kaboom, magic, and ... \(\color{#000000 }{ \displaystyle x=\pm\sqrt{9}=\pm 3}\) HOWEVER, THAT HAS TO DO WITH THE DEFINITION OF THE ABSOLUTE VALUE!! So, let's go back a step to taking the square root of both sides, \(\color{#000000 }{ \displaystyle \sqrt{x^2}=\sqrt{~9~} }\) And here comes in the definition of the abs. value; Absolute value of (let's call it \(z\)) is defined as; \(\color{#000000 }{ \displaystyle |z|=\sqrt{(z)^2} }\) (When you plug in -z or +z into the \(\sqrt{(z)^2}\), you get z in either case...) So what happens when taking the square rooot of both sides is, \(\color{#000000 }{ \displaystyle \sqrt{x^2}=\sqrt{~9~} }\) \(\color{#000000 }{ \displaystyle |x|=3 }\) (Simplifying the right side because we know √9=3, and on the left I applied the definition of the absolute value), And from there we get \(\color{#000000 }{ \displaystyle x=\pm3 }\)
If I had something like \(\color{#000000 }{ \displaystyle x^3=8 }\) \(\color{#000000 }{ \displaystyle \sqrt[3]{x^3}=\sqrt[3]{8}}\) \(\color{#000000 }{ \displaystyle x=2}\) (-2 is not an option, because when the powers are even there is no absolute value, since when we plug in a and -a into \(\sqrt[3]{(z)^3}\), we get different results.)
So, when solving your equation, ...
Prove for quadratic formula, through completing the square \(\color{black}{ \displaystyle \color{#009900}{\rm a}x^2+\color{#009900}{\rm b}x= -\color{#009900}{\rm c} }\) \(\color{black}{ \displaystyle \color{#009900}{\rm a}\left(x^2+\color{#009900}{\rm \frac{b}{a}}x\right)= -\color{#009900}{\rm c} }\) \(\color{black}{ \displaystyle \color{#009900}{\rm a}\left(x^2+\color{#009900}{\rm \frac{b}{a}}x+\left(\color{#009900}{\rm \frac{b}{2a}}\right)^2\color{black}{-}\left(\color{#009900}{\rm \frac{b}{2a}}\right)^2\right)= -\color{#009900}{\rm c}}\) \(\color{black}{ \displaystyle \color{#009900}{\rm a}\left(x^2+\color{#009900}{\rm \frac{b}{a}}x+\color{#009900}{\rm \frac{b^2}{4a^2}}\color{black}{-}\color{#009900}{\rm \frac{b^2}{4a^2}}\right)= -\color{#009900}{\rm c}}\) \(\color{black}{ \displaystyle \color{#009900}{\rm a}\left(x^2+\color{#009900}{\rm \frac{b}{a}}x+\color{#009900}{\rm \frac{b^2}{4a^2}}\right)\color{black}{-}\color{#009900}{\rm a\frac{b^2}{4a^2}}= -\color{#009900}{\rm c}}\) \(\color{black}{ \displaystyle \color{#009900}{\rm a}\left(x^2+\color{#009900}{\rm \frac{b}{a}}x+\color{#009900}{\rm \frac{b^2}{4a^2}}\right)\color{black}{-}\color{#009900}{\rm \frac{b^2}{4a}}= -\color{#009900}{\rm c}}\) \(\color{black}{ \displaystyle \color{#009900}{\rm a}\left(x+\color{#009900}{\rm \frac{b}{2a}}\right)^2= -\color{#009900}{\rm c}+\color{#009900}{\rm \frac{b^2}{4a}}}\) \(\color{black}{ \displaystyle \left(x+\color{#009900}{\rm \frac{b}{2a}}\right)^2= -\color{#009900}{\rm \frac{c}{a}}+\color{#009900}{\rm \frac{b^2}{4a^2}}}\) \(\color{black}{ \displaystyle \sqrt{\left(x+\color{#009900}{\rm \frac{b}{2a}}\right)^2}= \sqrt{-\color{#009900}{\rm \frac{c}{a}}+\color{#009900}{\rm \frac{b^2}{4a^2}}}}\) \(\LARGE \color{red}{\Longleftarrow}\) \(\color{black}{ \displaystyle \left|x+\color{#009900}{\rm \frac{b}{2a}}\right|= \sqrt{-\color{#009900}{\rm \frac{c}{a}}+\color{#009900}{\rm \frac{b^2}{4a^2}}}}\) \(\LARGE \color{red}{\Longleftarrow}\) \(\color{black}{ \displaystyle \left(x+\color{#009900}{\rm \frac{b}{2a}}\right)= \pm \sqrt{-\color{#009900}{\rm \frac{c}{a}}+\color{#009900}{\rm \frac{b^2}{4a^2}}}}\) \(\LARGE \color{red}{\Longleftarrow}\) \(\color{black}{ \displaystyle x= -\color{#009900}{\rm \frac{b}{2a}}\pm\sqrt{-\color{#009900}{\rm \frac{c}{a}}+\color{#009900}{\rm \frac{b^2}{4a^2}}}}\) \(\color{black}{ \displaystyle x= -\color{#009900}{\rm \frac{b}{2a}}\pm\sqrt{-\color{#009900}{\rm \frac{4ac}{4a^2}}+\color{#009900}{\rm \frac{b^2}{4a^2}}}}\) \(\color{black}{ \displaystyle x= -\color{#009900}{\rm \frac{b}{2a}}\pm\sqrt{\color{#009900}{\rm \frac{b^2-4ac}{4a^2}}}}\) \(\color{black}{ \displaystyle x= -\color{#009900}{\rm \frac{b}{2a}}\pm\sqrt{\color{#009900}{\rm \frac{b^2-4ac}{(2a)^2}}}}\) \(\color{black}{ \displaystyle x= -\color{#009900}{\rm \frac{b}{2a}}\pm\color{#009900}{\rm \frac{\sqrt{b^2-4ac}}{\sqrt{(2a)^2}}}}\) \(\color{black}{ \displaystyle x= -\color{#009900}{\rm \frac{b}{2a}}\pm\color{#009900}{\rm \frac{\sqrt{b^2-4ac}}{|2a|}}}\) and |2a| makes no difference, because we already have \(\pm\) by the square root, so \(\color{black}{ \displaystyle x= -\color{#009900}{\rm \frac{b}{2a}}\pm\color{#009900}{\rm \frac{\sqrt{b^2-4ac}}{2a}}}\)
In any case, in your problem, \(\color{#000000 }{ x=\displaystyle \frac{ -1\pm\sqrt{1^2-4\cdot 2 \cdot 2 \color{white}{|}} }{2\cdot 2} }\) (Via the quadratic formula) \(\color{#000000 }{ x=\displaystyle \frac{ -1\pm\sqrt{-15 \color{white}{|}} }{4} }\) \(\color{#000000 }{ x=\displaystyle -\frac{ 1\pm\sqrt{-15 \color{white}{|}} }{4} }\)
then take out the i from there
Thank you so so so much. This is very helpful!
yw...
(I don't want to overtype it) good luck!
No, this is perfect. Thank you!
:)
Join our real-time social learning platform and learn together with your friends!