how to determine if its converges or diverges
\[\frac{ \cos \left(\begin{matrix}\frac{ n \pi }{ 2 } \\ \end{matrix}\right) }{ \sqrt{n} }\]
\[-1\le cosn \le1\]
or is it \[\frac{ -1 }{ \sqrt{n} } \le \cos \frac{ \frac{ n \pi }{ 2} }{ \sqrt{n}}\le \frac{ 1 }{ \sqrt{n} }\]
\[\large\rm -1\le \cos\left(\frac{n \pi}{2}\right)\le1\]You start here, ya? And then divide "each side" by sqrt(n).
\[\large\rm \frac{-1}{\sqrt n}\le \frac{\cos\left(\frac{n \pi}{2}\right)}{\sqrt n}\le\frac{1}{\sqrt n}\]
\[\large\rm \lim_{n\to\infty}\frac{1}{\sqrt n}=?\]
Nice work, zepdrix. Note: zepdrix is using the so-called Squeeze Theorem to determine whether or not the given quantity converges.
yea that what i was thinking but not sure if i should start with cosn first in the middle
\[\frac{ 2\tan^{-1}n }{ n^{3}+4 }\]
can you help me on this one also?
\[\large\rm \frac{ 2\color{orangered}{\arctan(n)}}{n^{3}+4}\] Hmm I think this one will work out the same way, just with a different end value. If you remember what the graph of arctangent looks like, that helps.|dw:1475435258017:dw|It has a horizontal asymptote at pi/2.
Join our real-time social learning platform and learn together with your friends!