What is x 3+y 3+z 3=k
easy
I can;t figure it out I need help
I'm gonna help you
Thank you
\(x=\sqrt[3]{k-y^{3}-z^{3}}\)
My teacher isn't good at helping so thank you
lemme break it down for you
Yes please
Step \(x^{3}+y^{3}+z^{3}=k\)\(\xpmhighlightbox{bgcolor=#3A3F50, underlinecolor=#3A3F50}{x^{3}+y^{3}+z^{3}}=k\)Move the variables to the right-hand side and change their signs \(x^{3}=\xpmhighlightbox{bgcolor=#3A3F50, underlinecolor=#3A3F50}{-y^{3}-z^{3}}+k\)Step \(x^{3}=-y^{3}-z^{3}+k\)\(\xpmhighlightbox{bgcolor=#3A3F50, underlinecolor=#3A3F50}{x^{3}}=\xpmhighlightbox{bgcolor=#3A3F50, underlinecolor=#3A3F50}{-y^{3}-z^{3}+k}\)Take the root of both sides of the equation \(\xpmhighlightbox{bgcolor=#3A3F50, underlinecolor=#3A3F50}{x}=\xpmhighlightbox{bgcolor=#3A3F50, underlinecolor=#3A3F50}{\sqrt[3]{-y^{3}-z^{3}+k}}\)Step \(x=\sqrt[3]{-y^{3}-z^{3}+k}\)\(x=\sqrt[3]{\xpmhighlightbox{bgcolor=#3A3F50, underlinecolor=#3A3F50}{-y^{3}-z^{3}+k}}\)Use the commutative property to reorder the terms\(x=\sqrt[3]{\xpmhighlightbox{bgcolor=#3A3F50, underlinecolor=#3A3F50}{k-y^{3}-z^{3}}}\)Solution\(x=\sqrt[3]{k-y^{3}-z^{3}}\)
see
I'm so smarttt
Thank you Nina
you are welcome
bro I just heard a firework..
they buggin
Oh I'm scared for you
IT'S NOT EVEN DARK YET
FOR REAL
they not even gonna be able 2 see shi
Join our real-time social learning platform and learn together with your friends!