Find the x-coordinate of the point(s) of inflection on the graph of y = x^3 – 6x^2 + 9x + 3. a. x = 0 b. x = 1 c. x = 2 d. x = 3
the critical pts are 1 and 3
@ganeshie8 @Directrix @mathmate @AuroraB @iamawesome1 @Abhisar @wio @iGreen @nincompoop @Preetha @uri @TheSmartOne
@Michele_Laino @AlexandervonHumboldt2 @Abhisar
Do I find the second derivative?
f'(x)= 3x^2-12x+9 f''(x)= 6x-12
If I set 6x=12 then x=2
\[find \frac{ d^2y }{ dx^2 }~at~x=1,x=3\] where \[\frac{ d^2y }{ dx^2 }=0\] that point is point of inflexion
from wht u told me to do i got (1,-6)(3,6)
@surjithayer
so now what do i do?
at x=2, f"(x)=0 so point of inflexion is x=2 1. at point of inflexion concavity or convexity changes
|dw:1422642284106:dw|
so the answers 2 then?
@paki @ganeshie8 @Directrix @mathmate @AuroraB @iamawesome1 @wio @iGreen @nincompoop @Preetha @uri @TheSmartOne @surjithayer @Abhisar @Alexistheamazing @AlexandervonHumboldt2 @Quan99 @wio @Loser66 @Compassionate @uri
Join our real-time social learning platform and learn together with your friends!