Find all solutions in the interval [0, 2π). 7 tan2x - 21 tan x = 0
@mathmate
@tkhunny
i'd say always rip it into sin and cos i reckon you have: \(7 \tan2x - 21 \tan x = 0\)
I have the numbers but i need it in fraction form
^2
7 tan ^2x - 21 tan x=0
Treat it like a quadratic equation. Factor and solve.
No sine and cosine silliness. You should know where tan(x) = 0 and tan(x) = 3.
Mmmmm \(7 \dfrac{\sin 2x}{\cos 2x} - 21 \dfrac{\sin x}{\cos x} = 0\) \( \dfrac{\sin 2x}{\cos 2x} - 3 \dfrac{\sin x}{\cos x} = 0\) \( \dfrac{2 \sin x \cos x}{\cos 2x} - 3 \dfrac{\sin x}{\cos x} = 0\) nil solution is \(\sin x = 0\)....... \( \dfrac{2 \cos x}{\cos 2x} - 3 \dfrac{1}{\cos x} = 0\) \( \dfrac{2 \cos^2 x}{1} - 3 \dfrac{\cos 2x}{1} = 0\) Hang on a mo, its: \(7 \tan^2(x) - 21 \tan( x) = 0\) And not \(7 \tan(2x) - 21 \tan (x) = 0\) Grrrr
Join our real-time social learning platform and learn together with your friends!