kaylak:

help pre cal

1 year ago

where is the question

1 year ago
kaylak:

1 year ago
kaylak:

1 year ago

For this question you need to use the Law of Sines. Do you know what that is?

1 year ago
kaylak:

yes i just need my answers checked

1 year ago

$\frac{ \sin 90 \times 12 }{ \sin 15 } = c$

1 year ago

You are correct on the first one

1 year ago
kaylak:

yay

1 year ago
kaylak:

2 . tan x =10/7=55

1 year ago
kaylak:

am i correct

1 year ago

Since C is a right angle, we know that c is the hypotenuse. Therefore $\sqrt (a + b) = c$ $12.2 = c$ We get: $\frac{ \sin B }{ 10 } = \frac{ \sin 90 }{ 12.2 }$ $10\sin 90 = 12.2 \sin B$ $\frac{ 10 }{ 12.2 } = \sin B$ $\sin^{-1} (\frac{ 10 }{ 12.2 }) = 55.05$

1 year ago
kaylak:

well that works too lol

1 year ago
kaylak:

3 i used a^2+b^2=c^2

1 year ago
kaylak:

is 3 correct

1 year ago

A = $A = 180 - 90 - 30 = 60$ $\frac{ \sin 30 }{ b } = \frac{ \sin 90 }{ 10 }$ $b = \frac{ 10\sin30 }{ \sin90 } = 5$ $a^2 + 25 = 100$ $a^2 = 75$ $a = 8.6602$

1 year ago

Also the correct form of the formula I used earlier is: $c = \sqrt (a^2 + b^2)$

1 year ago
kaylak:

so d is correct omg how many answers are d i have 2 more to check lol

1 year ago
kaylak:

1 year ago

|dw:1516570569473:dw|

1 year ago
kaylak:

ok all answers correct so far?

1 year ago
kaylak:

4 d 5 a

1 year ago

$\frac{ \sin40 }{ 50 } = \frac{ \sin90 }{ c }$ $c \sin40 = 50\sin90$ $c = \frac{ 50\sin90 }{ \sin40 }$ c = about 78 miles

1 year ago

$2500 + b^2 = 6084$ b = about 60 miles

1 year ago
kaylak:

5?

1 year ago
kaylak:

you there

1 year ago
kaylak:

1 year ago

|dw:1516571585613:dw|

1 year ago

$\frac{ \sin42 }{ 15 } = \frac{ \sin90 }{ c }$ $c \sin42 = 15 \sin90$ $c = \frac{ 15 \sin 90 }{ \sin42 }$ $c = 22.4$

1 year ago
kaylak:

so all are correct

1 year ago
kaylak:

dddda

1 year ago
kaylak:

right?

1 year ago

$225 + b^2 = 501.76$ $b^2 = 276.76$ $b = 16.7$

1 year ago