Ask your own question, for FREE!
Mathematics 12 Online
Nicole:

http://prntscr.com/ntaza8

Nicole:

@Narad

Narad:

Question nº27 \[x^2-9=0\] Factorising \[(x+3)(x-3)=0\] There are 2 solutions \[x-3=0\] \[x=3\] and \[x+3=0\] \[x=-3\] The solutions are x= {-3,3} The answer is option B

Narad:

Question nº28 The function is \[f(x)=7x^2-28x-60\] To obtain the vertex, write the functio in the vertex form Write the function as \[f(x)=a(x-h)^2+k\] Therefore, \[f(x)=7(x^2-4x)-60\] By completing the squares \[f(x)=7(x^2-4x+4)-60-28\] \[f(x)=7(x-2)^2-88\] The vertex is \[=(h,k)=(2, -88)\] The answer is option A

Narad:

The equation of the height in terms of t is \[h(t)=-16t^2+64t+80\] Write the equation in the vertex form \[h(t)=-16(t^2-4t)+80\] \[h(t)=-16(t^2-4t+4)+80+64\] \[h(t)=-16(t-2)^2+144\] The maximun point is when \[t=2\] and the height is \[h(2)=144ft\] The answer is option A

Nicole:

okay http://prntscr.com/ntb32z

Narad:

The equation of the red line is \[y=ax+2\] 2 points on the line are \[(0,2)\] and \[(2,0)\] Plugging those values in the equation of the line \[2=a*0+b\] and \[0=2a+b\] Solving for a and b \ and \[a=-b/2=-2/2=-1\] The equation of the red line is \[y=-x+2\] The shaded part of the graph is \[y \ge -x+2\] The answer is option A

Narad:

b=2

Nicole:

http://prntscr.com/ntbc4f

Narad:

The equation of this graph is \[y=|x|\] This is not a quadratic function The answer is FALSE

Nicole:

http://prntscr.com/ntbcjb

Narad:

The quadratic function in the vertex form is \[y=a(x-h)^2+k\] From the graph, the vertex is \[=(h,k)= (-2,-3)\] The k value is k=-3 This is option C

Nicole:

Okay http://prntscr.com/ntbd3i

Narad:

The vertex form of the equation is \[y=a(x-h)^2+k\] Here, the vertex is \[(h,k)=(-4,-6)\] The equation of the graph is \[y=a(x+4)^2-6\] When x=-2, the value of y=-2 Plugging the values in the equation \[-2=a(-2+4)^2-6=4a-6\] 4a=4 a=1 The equation of the graph is \[y=(x+4)^2-6\] The answer is option C

Nicole:

Okay http://prntscr.com/ntbejm

Narad:

Question nº22 The quadratic equation is \[y^2-7y-18=0\] Rewriting the equation as \[y^2-7y-2y+2y-18=0\] \[y^2-9y+2y-18=0\] \[y(y-9)+2(y-9)=0\] Factorising \[(y+2)(y-9)=0\] The solutions are y+2=0 y=-2 and y-9=0 y=9 The solutions are S={-2,9} The answer is option A

Narad:

Question nº23 \[x^2-56=10x\] Rewriting the equation as \[x^2-10x-56=0\] \[x^2-10x-4x+4x-56=0\] \[x^2-14x+4x-56=0\] \[x(x-14)+14(x-14)=0\] Factoring \[(x+4)(x-14)=0\] The solutions are x+4=0 and x-14=0 x=-4 and a=14 The solutions are S={-4,14} The answer is option D

Narad:

Question nº24 Are you familiar with the discriminant? The equation is \[2x^2-3x-5=0\] Comparing this to the equation \[ax^2+bx+c=0\] a=2 b=-3 c=-5 The discriminant is \[\Delta =b^2-4ac =(-3)^2-4*(2)*(-5)=9+40=49\] As the discriminant is \[\Delta >0\] There are 2 solutions The answer is option C

Nicole:

Okay http://prntscr.com/ntbgu8

Narad:

Question nº25 The equation is \[x^2-5x+9=0\] a=1 b=-5 c=9 The discriminant is \[\Delta = b^2-4ac=(-5)^2-4*1*9=25-36=-9\] as \[\Delta < 0\] There are no real solutions The solutions are \[x=(-b \pm \sqrt{\Delta})/(2a) = (5\pm \sqrt{-9})/(2*1)\] \[x=5/2\pm 3/2i\] I think there is a problem with the solutions proposed.

Narad:

Question nº26 The equation is \[x^2-6x+4=0\] a=1 b=-6 c=4 The discriminant is \[\Delta= b^2-4ac=(-6)^2-4*4=36-16=20\] The solutions are \[x=(-b \pm \sqrt{\Delta})/(2a)=(6\pm \sqrt{20})/(2) =(6\pm2\sqrt{5})/2=3\pm \sqrt{5}\] This is TRUE

Narad:

Question nº27 \[x^2-9=0\] Factorising \[(x-3)(x+3)=0\] The solutions are x+3=0 and x-3=0 x=-3 and x=3 The solutions are S={-3, 3} The answer is option B

Nicole:

Okay http://prntscr.com/ntc0rf ignore my answers

Narad:

We have already replied to those questions

Nicole:

No I accidentally put those answers but we did not do them yet

Nicole:

oh wait sorry

Nicole:

I got it my bad

Nicole:

http://prntscr.com/ntc10h

Narad:

Question nº 28 was the second question Question nº29 was the third question

Nicole:

Yes I got that http://prntscr.com/ntc10h

Narad:

This is a quadratic function The domain is all real values \[x \in \mathbb{R} \] The range is \[y \in [-\infty, 4)\] Therefore \[y \le 4\] The answer is option C

Nicole:

http://prntscr.com/ntc3id

jhonyy9:

\(\color{#0cbb34}{\text{Originally Posted by}}\) @Narad Question nº25 @narad attention please 25-36 not equal -9 The equation is \[x^2-5x+9=0\] a=1 b=-5 c=9 The discriminant is \[\Delta = b^2-4ac=(-5)^2-4*1*9=25-36=-9\] as \[\Delta < 0\] There are no real solutions The solutions are \[x=(-b \pm \sqrt{\Delta})/(2a) = (5\pm \sqrt{-9})/(2*1)\] \[x=5/2\pm 3/2i\] I think there is a problem with the solutions proposed. \(\color{#0cbb34}{\text{End of Quote}}\)

Narad:

The quadratic equation in vertex form is \[y=a(x-h)^2+k\] and the vertex is (12, -8) \[y=a(x-h)^2+k=a(x-12)^2-8\] \[y=a(x^2-24x+144)-8=0\] The zeros are x=10 and x=14 Therefore, \[0=a(10-12)^2-8=4a-8\] a=2 \[0=a(14-12)^2-8=4a-8\] a=2 The quadratic equation is \[y=2(x-12)^2-8\] \[y=2(x^2-24x+144)-8=2x^2-48x+280\] The answer is option A

Narad:

Correction question nº25 The discriminant is \[\Delta=25-36=-11\] The solutions are \[x=(5\pm \sqrt{11}i)/2=5/2 \pm \sqrt{11}/2i\] The answr is option B

Narad:

Question nº32 The vertex form of a quadratic equation is \[y=a(x-h)^2+k\] The vertex is = (17,-2) Therefore, \[y=a(x-17)^2-2\] The zeros of the equation are x=16 and x=18 Plugging those values \[0=a(16-17)^2-2=a-2\] a=2 \[0=a(18-17)^2-2=a-2\] a=2 The equation is \[y=2(x-17)^2-2= 2(x^2-34x+289)-2=2x^2-68x+576\] The answer is option B

Nicole:

Okay http://prntscr.com/ntc9w4

Narad:

Let the width of the deck = x yd The area of the pool is = 15*20=300 yd^2 The new area of the pool is = 600 yd^2 The new area is \[A= (15+2x)(20+2x)= 300+70x+4x^2=600\] \[4x^2+70x-300=0\] \[2x^2+35x-150=0\] a=2 b=35 c=-150 The solutions to this quadratic equation are \[x=(-35\pm \sqrt{35^2-4*2*(-150)})/(2*2)=(-35\pm \sqrt{2425})/4=(-35\pm49.2)/4\] We keep the positive value \[x=(-35+49.2)/4=3.56 \approx 3.6\] The answer is option A

Nicole:

http://prntscr.com/ntcc2t

Narad:

The solution is \[16^{-3/4} = (1/16)^{3/4} = ((1/16)^{1/4})^{3}=(1/2)^{3}=1/8\] The answer is false since the expression is not =1/4 but 1/8

Nicole:

http://prntscr.com/ntk6ph

Nicole:

@Narad

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
unknownnnnnn: Static at 2 A.M. My mind doesnu2019t knock. It rearranges the furniture at 2 a.m., asks me to notice every creak. I lie still like that might help, like silence is a language my thoughts forgot. They line up with receipts, proof of moments I replayed too many times to pretend they were accidents. Iu2019m fluent in overthinking itu2019s the only subject I never skipped. I can turn one sentence into a courtroom drama, cross-examine my tone, convict myself without witnesses. People call me u201cstrongu201d because I donu2019t spill. They donu2019t see the cup shaking in my hands, how much effort it takes to keep the surface calm. Confidence comes in phases. Some days it fits like skin. Some days itu2019s a costume I forget Iu2019m wearing until it starts to pinch. I laugh on cue. I answer u201cfineu201d with convincing timing. Iu2019ve learned where to pause, how long eye contact should last, how not to sound like a question when Iu2019m one. The past isnu2019t loud. It doesnu2019t need to be. It just clears its throat at the wrong moments, reminds me what I already survived and what might try again. But hereu2019s the part I donu2019t downplay I stay. Even when my thoughts argue in circles, even when doubt files appeals. I choose presence over perfection. Breath over escape. I donu2019t win every round, but I donu2019t forfeit myself either. I am not the static. I am the one listening, deciding what deserves a response and what can fade without taking my name with it.
21 hours ago 2 Replies 0 Medals
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!