Ask your own question, for FREE!
Mathematics 21 Online
OpenStudy (anonymous):

determine the matrices P and Q such that PAQ is diagonal matrix

OpenStudy (anonymous):

\[Let A=\left[\begin{matrix}6 & -2 & 2 \\ -2 & 3 & -1\\ 2 & -1 & 3\end{matrix}\right]\]

OpenStudy (anonymous):

@ganeshie8

ganeshie8 (ganeshie8):

where are we exactly

ganeshie8 (ganeshie8):

I think the matrix has changed check the last element in first row

OpenStudy (anonymous):

no its seam as before

ganeshie8 (ganeshie8):

it was "-2" earlier

OpenStudy (anonymous):

ohh that one was wrong typo sorry for that @ganeshie8

OpenStudy (amistre64):

since ive forgotten any quick ways to go about this cant we just make 2 general 3x3 matrixes, work the process, and solve the system of equations that results?

OpenStudy (anonymous):

can u try to remember any ways to solve this equation ?? @amistre64

OpenStudy (amistre64):

let me scratch something on paper to see if my thought is workable

OpenStudy (anonymous):

okay take ur time :)

OpenStudy (amistre64):

D = PAQ, D being the diagonlized matrix then P'DQ' = A the wolf gets us a solution, but no way to actually approach it http://www.wolframalpha.com/input/?i=diagonalize%7B%7B6%2C-2%2C2%7D%2C%7B-2%2C3%2C-1%7D%2C%7B2%2C-1%2C3%7D%7D

OpenStudy (zarkon):

find the eigenvectors of A

OpenStudy (anonymous):

show me how plz @Zarkon

OpenStudy (amistre64):

\[ \left[\begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{matrix}\right] \left[\begin{matrix} 6 & -2 & 2 \\ -2 & 3 & -1\\ 2 & -1 & 3\end{matrix}\right] \left[\begin{matrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33}\end{matrix}\right] \] \[ \left[\begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{matrix}\right] \left[\begin{matrix} 6b_{11}-2b_{21}+2b_{31} & 6b_{12}-2b_{22}+2b_{32} & 6b_{13}-2b_{23}+2b_{33} \\ -2b_{11}+3b_{21}-b_{31} & -2b_{12}+3b_{22}-b_{32} & -2b_{13}+3b_{23}-b_{33}\\ 2b_{11}-b_{21}+3b_{31} & 2b_{12}-b_{22}+3b_{32} & 2b_{13}-b_{23}+3b_{33} \end{matrix}\right] \] \[\left[ \begin{matrix} a_{11}(6b_{11}-2b_{21}+2b_{31}) + a_{12}(-2b_{11}+3b_{21}-b_{31}) + a_{13}(2b_{11}-b_{21}+3b_{31})=x\\ a_{21}(6b_{11}-2b_{21}+2b_{31}) + a_{22}(-2b_{11}+3b_{21}-b_{31}) + a_{23}(2b_{11}-b_{21}+3b_{31})=0\\ a_{31}(6b_{11}-2b_{21}+2b_{31}) + a_{32}(-2b_{11}+3b_{21}-b_{31}) + a_{33}(2b_{11}-b_{21}+3b_{31})=0 \end{matrix} \right.\] \[\left. \begin{matrix} a_{11}(6b_{12}-2b_{22}+2b_{32}) + a_{12}(-2b_{12}+3b_{22}-b_{32}) + a_{13}(2b_{12}-b_{22}+3b_{32})=0\\ a_{21}(6b_{12}-2b_{22}+2b_{32}) + a_{22}(-2b_{12}+3b_{22}-b_{32}) + a_{23}(2b_{12}-b_{22}+3b_{32})=y\\ a_{31}(6b_{12}-2b_{22}+2b_{32}) + a_{32}(-2b_{12}+3b_{22}-b_{32}) + a_{33}(2b_{12}-b_{22}+3b_{32})=0 \end{matrix} \right.\] \[\left. \begin{matrix} a_{11}(6b_{13}-2b_{23}+2b_{33}) + a_{12}(-2b_{13}+3b_{23}-b_{33}) + a_{13}(2b_{13}-b_{23}+3b_{33})=0\\ a_{21}(6b_{13}-2b_{23}+2b_{33}) + a_{22}(-2b_{13}+3b_{23}-b_{33}) + a_{23}(2b_{13}-b_{23}+3b_{33})=0\\ a_{31}(6b_{13}-2b_{23}+2b_{33}) + a_{32}(-2b_{13}+3b_{23}-b_{33}) + a_{33}(2b_{13}-b_{23}+3b_{33})=z \end{matrix} \right]\]

OpenStudy (amistre64):

eigenvalues would most likely be the shorter approach :)

OpenStudy (anonymous):

okay so i have to apply this and i will get the final answer

OpenStudy (amistre64):

if we were to take a long approach, this would be how i would go about it ... but there are simpler ways that i have forgotten about over time

ganeshie8 (ganeshie8):

eigen vectors give you the shortest solution : \[SAS^{-1} = \Lambda \] that requires you to understand some theory, however elementary row operations should also give you easy solution as amistre started

ganeshie8 (ganeshie8):

may be manupulating a triangular matrix would be easy, so lets change the given matrix to triangular form. fix elements below first pivot : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&-1/3&11/3\\ \end{array} \right] \]

ganeshie8 (ganeshie8):

does that multiplication make sense ?

OpenStudy (anonymous):

no

ganeshie8 (ganeshie8):

interpret row by row

OpenStudy (anonymous):

okay i got it

ganeshie8 (ganeshie8):

[1 0 0] means, "1" of first row, "0" of second row and "0" of third row : \[ \left[ \begin{array} {ccc} 1&0&0\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 6&-2&-2\\ \end{array} \right] \]

ganeshie8 (ganeshie8):

[1/3, 1, 0] means "1/3" of first row, "1" of second row and "0" of third row : \[\left[ \begin{array} {ccc} 1/3&1&0\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 0&7/3&-5/3\\ \end{array} \right]\]

ganeshie8 (ganeshie8):

[-1/3, 0, 1] means "-1/3" of first row, "0" of second row and "1" of third row : \[\left[ \begin{array} {ccc} -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 0&-1/3&11/3\\ \end{array} \right]\]

ganeshie8 (ganeshie8):

Overall : \[\left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&-1/3&11/3\\ \end{array} \right]\]

ganeshie8 (ganeshie8):

you need to look at them "row" by row

OpenStudy (anonymous):

now im okay with it

ganeshie8 (ganeshie8):

then only they make sense

ganeshie8 (ganeshie8):

good, so is the matrix on right side triangular ?

ganeshie8 (ganeshie8):

looks we need to fix another element in the bottom row, eh ?

ganeshie8 (ganeshie8):

\[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{-1/3}&11/3\\ \end{array} \right] \]

ganeshie8 (ganeshie8):

if we make that 0, it becomes triangular, right ?

OpenStudy (anonymous):

i think yeah

ganeshie8 (ganeshie8):

how to make it 0 ?

ganeshie8 (ganeshie8):

tell me a row to left multiply

ganeshie8 (ganeshie8):

will this work ? [0 1/7 1 ]

OpenStudy (anonymous):

this one with which row ??

ganeshie8 (ganeshie8):

\[ \left[ \begin{array} {ccc} 1&0&0\\ 0&1&0\\ 0&1/7&1\\ \end{array} \right] \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 1&0&0\\ 0&1&0\\ 0&1/7&1\\ \end{array} \right] \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{-1/3}&11/3\\ \end{array} \right] \]

OpenStudy (anonymous):

okay

ganeshie8 (ganeshie8):

multiply the right hand side and see what you get

ganeshie8 (ganeshie8):

\[ \left[ \begin{array} {ccc} 1&0&0\\ 0&1&0\\ 0&1/7&1\\ \end{array} \right] \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 1&0&0\\ 0&1&0\\ 0&1/7&1\\ \end{array} \right] \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{-1/3}&11/3\\ \end{array} \right] \] becomes \[ \left[ \begin{array} {ccc} 1&0&0\\ 0&1&0\\ 0&1/7&1\\ \end{array} \right] \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \]

ganeshie8 (ganeshie8):

we're mostly done as we reached a triangular matrix. lets just do the multiplication on left hand side also

ganeshie8 (ganeshie8):

after multiplying left side matrices, you get : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \]

ganeshie8 (ganeshie8):

still wid me ? :)

OpenStudy (anonymous):

yeah im with u

OpenStudy (anonymous):

but im not getting seam value but still okay later i will see y

ganeshie8 (ganeshie8):

no, first make sure you're also getting same value... otherwise we won't get right result in the end fyi : i do lot of arithmetic mistakes, so watch out >.<

OpenStudy (anonymous):

okay now im getting seam answer

ganeshie8 (ganeshie8):

good, two more steps and we will be done!

ganeshie8 (ganeshie8):

so we're here : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \]

ganeshie8 (ganeshie8):

lets split the right side matrix into "diagonal" and "triangular"

OpenStudy (anonymous):

okay

ganeshie8 (ganeshie8):

\[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \] becomes : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 6&0&0\\ 0&7/3&0\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \left[ \begin{array} {ccc} 1&-2/6&-2/6\\ 0&1&-5/7\\ 0&\color{red}{0}&1\\ \end{array} \right] \]

ganeshie8 (ganeshie8):

we finally go the diagonal matrix ! just make sure you're 100% at peace with the splitting, one last step is there to get it to the required form : `PAQ = diagonal matrix`

OpenStudy (anonymous):

okay sure

ganeshie8 (ganeshie8):

last step is to simply find the inverse of right most matrix and multply both sides : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \left[ \begin{array} {ccc} 1&-2/6&-2/6\\ 0&1&-5/7\\ 0&\color{red}{0}&1\\ \end{array} \right]^{\color{Red}{-1}} \\~\\ = \left[ \begin{array} {ccc} 6&0&0\\ 0&7/3&0\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \]

ganeshie8 (ganeshie8):

we're done ! thats the required `PAQ = diagonal` form

ganeshie8 (ganeshie8):

ofcourse you need to find the inverse and plug there to be called officially done :)

OpenStudy (anonymous):

so now we r done ??

ganeshie8 (ganeshie8):

yes, just find the inverse and plugin

ganeshie8 (ganeshie8):

\[\left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \left[ \begin{array} {ccc} 1&-2/6&-2/6\\ 0&1&-5/7\\ 0&\color{red}{0}&1\\ \end{array} \right]^{\color{Red}{-1}} \\~\\ = \left[ \begin{array} {ccc} 6&0&0\\ 0&7/3&0\\ 0&\color{red}{0}&72/21\\ \end{array} \right]\] plugging in the inverse you get : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \left[ \begin{array} {ccc} 1&1/3&4/7\\ 0&1&5/7\\ 0&\color{red}{0}&1\\ \end{array} \right] \\~\\ = \left[ \begin{array} {ccc} 6&0&0\\ 0&7/3&0\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \]

ganeshie8 (ganeshie8):

thats it !

OpenStudy (anonymous):

okay thank u so much man

ganeshie8 (ganeshie8):

np :)

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Latest Questions
EdwinJsHispanic: part 2 of singing ;-;
2 hours ago 6 Replies 0 Medals
EdwinJsHispanic: rate my singing, rn I'm a bit sick
3 hours ago 38 Replies 4 Medals
Arriyanalol: what's a non fiction book
2 hours ago 9 Replies 1 Medal
Arriyanalol: what is 67
9 hours ago 3 Replies 1 Medal
Arriyanalol: how did Charlie Kirk die
11 hours ago 2 Replies 1 Medal
Arriyanalol: is these correct
12 hours ago 7 Replies 0 Medals
gelphielvr: Is it possible to read a 400 page verse book in 1 hour?
11 hours ago 31 Replies 3 Medals
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!