determine the matrices P and Q such that PAQ is diagonal matrix
\[Let A=\left[\begin{matrix}6 & -2 & 2 \\ -2 & 3 & -1\\ 2 & -1 & 3\end{matrix}\right]\]
@ganeshie8
where are we exactly
I think the matrix has changed check the last element in first row
no its seam as before
it was "-2" earlier
ohh that one was wrong typo sorry for that @ganeshie8
since ive forgotten any quick ways to go about this cant we just make 2 general 3x3 matrixes, work the process, and solve the system of equations that results?
can u try to remember any ways to solve this equation ?? @amistre64
let me scratch something on paper to see if my thought is workable
okay take ur time :)
D = PAQ, D being the diagonlized matrix then P'DQ' = A the wolf gets us a solution, but no way to actually approach it http://www.wolframalpha.com/input/?i=diagonalize%7B%7B6%2C-2%2C2%7D%2C%7B-2%2C3%2C-1%7D%2C%7B2%2C-1%2C3%7D%7D
find the eigenvectors of A
show me how plz @Zarkon
\[ \left[\begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{matrix}\right] \left[\begin{matrix} 6 & -2 & 2 \\ -2 & 3 & -1\\ 2 & -1 & 3\end{matrix}\right] \left[\begin{matrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33}\end{matrix}\right] \] \[ \left[\begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{matrix}\right] \left[\begin{matrix} 6b_{11}-2b_{21}+2b_{31} & 6b_{12}-2b_{22}+2b_{32} & 6b_{13}-2b_{23}+2b_{33} \\ -2b_{11}+3b_{21}-b_{31} & -2b_{12}+3b_{22}-b_{32} & -2b_{13}+3b_{23}-b_{33}\\ 2b_{11}-b_{21}+3b_{31} & 2b_{12}-b_{22}+3b_{32} & 2b_{13}-b_{23}+3b_{33} \end{matrix}\right] \] \[\left[ \begin{matrix} a_{11}(6b_{11}-2b_{21}+2b_{31}) + a_{12}(-2b_{11}+3b_{21}-b_{31}) + a_{13}(2b_{11}-b_{21}+3b_{31})=x\\ a_{21}(6b_{11}-2b_{21}+2b_{31}) + a_{22}(-2b_{11}+3b_{21}-b_{31}) + a_{23}(2b_{11}-b_{21}+3b_{31})=0\\ a_{31}(6b_{11}-2b_{21}+2b_{31}) + a_{32}(-2b_{11}+3b_{21}-b_{31}) + a_{33}(2b_{11}-b_{21}+3b_{31})=0 \end{matrix} \right.\] \[\left. \begin{matrix} a_{11}(6b_{12}-2b_{22}+2b_{32}) + a_{12}(-2b_{12}+3b_{22}-b_{32}) + a_{13}(2b_{12}-b_{22}+3b_{32})=0\\ a_{21}(6b_{12}-2b_{22}+2b_{32}) + a_{22}(-2b_{12}+3b_{22}-b_{32}) + a_{23}(2b_{12}-b_{22}+3b_{32})=y\\ a_{31}(6b_{12}-2b_{22}+2b_{32}) + a_{32}(-2b_{12}+3b_{22}-b_{32}) + a_{33}(2b_{12}-b_{22}+3b_{32})=0 \end{matrix} \right.\] \[\left. \begin{matrix} a_{11}(6b_{13}-2b_{23}+2b_{33}) + a_{12}(-2b_{13}+3b_{23}-b_{33}) + a_{13}(2b_{13}-b_{23}+3b_{33})=0\\ a_{21}(6b_{13}-2b_{23}+2b_{33}) + a_{22}(-2b_{13}+3b_{23}-b_{33}) + a_{23}(2b_{13}-b_{23}+3b_{33})=0\\ a_{31}(6b_{13}-2b_{23}+2b_{33}) + a_{32}(-2b_{13}+3b_{23}-b_{33}) + a_{33}(2b_{13}-b_{23}+3b_{33})=z \end{matrix} \right]\]
eigenvalues would most likely be the shorter approach :)
okay so i have to apply this and i will get the final answer
if we were to take a long approach, this would be how i would go about it ... but there are simpler ways that i have forgotten about over time
eigen vectors give you the shortest solution : \[SAS^{-1} = \Lambda \] that requires you to understand some theory, however elementary row operations should also give you easy solution as amistre started
may be manupulating a triangular matrix would be easy, so lets change the given matrix to triangular form. fix elements below first pivot : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&-1/3&11/3\\ \end{array} \right] \]
does that multiplication make sense ?
no
interpret row by row
okay i got it
[1 0 0] means, "1" of first row, "0" of second row and "0" of third row : \[ \left[ \begin{array} {ccc} 1&0&0\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 6&-2&-2\\ \end{array} \right] \]
[1/3, 1, 0] means "1/3" of first row, "1" of second row and "0" of third row : \[\left[ \begin{array} {ccc} 1/3&1&0\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 0&7/3&-5/3\\ \end{array} \right]\]
[-1/3, 0, 1] means "-1/3" of first row, "0" of second row and "1" of third row : \[\left[ \begin{array} {ccc} -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 0&-1/3&11/3\\ \end{array} \right]\]
Overall : \[\left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&-1/3&11/3\\ \end{array} \right]\]
you need to look at them "row" by row
now im okay with it
then only they make sense
good, so is the matrix on right side triangular ?
looks we need to fix another element in the bottom row, eh ?
\[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{-1/3}&11/3\\ \end{array} \right] \]
if we make that 0, it becomes triangular, right ?
i think yeah
how to make it 0 ?
tell me a row to left multiply
will this work ? [0 1/7 1 ]
this one with which row ??
\[ \left[ \begin{array} {ccc} 1&0&0\\ 0&1&0\\ 0&1/7&1\\ \end{array} \right] \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 1&0&0\\ 0&1&0\\ 0&1/7&1\\ \end{array} \right] \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{-1/3}&11/3\\ \end{array} \right] \]
okay
multiply the right hand side and see what you get
\[ \left[ \begin{array} {ccc} 1&0&0\\ 0&1&0\\ 0&1/7&1\\ \end{array} \right] \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 1&0&0\\ 0&1&0\\ 0&1/7&1\\ \end{array} \right] \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{-1/3}&11/3\\ \end{array} \right] \] becomes \[ \left[ \begin{array} {ccc} 1&0&0\\ 0&1&0\\ 0&1/7&1\\ \end{array} \right] \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -1/3&0&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \]
we're mostly done as we reached a triangular matrix. lets just do the multiplication on left hand side also
after multiplying left side matrices, you get : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \]
still wid me ? :)
yeah im with u
but im not getting seam value but still okay later i will see y
no, first make sure you're also getting same value... otherwise we won't get right result in the end fyi : i do lot of arithmetic mistakes, so watch out >.<
okay now im getting seam answer
good, two more steps and we will be done!
so we're here : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \]
lets split the right side matrix into "diagonal" and "triangular"
okay
\[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 6&-2&-2\\ 0&7/3&-5/3\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \] becomes : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \\~\\ = \left[ \begin{array} {ccc} 6&0&0\\ 0&7/3&0\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \left[ \begin{array} {ccc} 1&-2/6&-2/6\\ 0&1&-5/7\\ 0&\color{red}{0}&1\\ \end{array} \right] \]
we finally go the diagonal matrix ! just make sure you're 100% at peace with the splitting, one last step is there to get it to the required form : `PAQ = diagonal matrix`
okay sure
last step is to simply find the inverse of right most matrix and multply both sides : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \left[ \begin{array} {ccc} 1&-2/6&-2/6\\ 0&1&-5/7\\ 0&\color{red}{0}&1\\ \end{array} \right]^{\color{Red}{-1}} \\~\\ = \left[ \begin{array} {ccc} 6&0&0\\ 0&7/3&0\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \]
we're done ! thats the required `PAQ = diagonal` form
ofcourse you need to find the inverse and plug there to be called officially done :)
so now we r done ??
yes, just find the inverse and plugin
wolfram says inverse is http://www.wolframalpha.com/input/?i=inverse%7B%7B1%2C-2%2F6%2C-2%2F6%7D%2C%7B0%2C1%2C-5%2F7%7D%2C%7B0%2C0%2C1%7D%7D
\[\left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \left[ \begin{array} {ccc} 1&-2/6&-2/6\\ 0&1&-5/7\\ 0&\color{red}{0}&1\\ \end{array} \right]^{\color{Red}{-1}} \\~\\ = \left[ \begin{array} {ccc} 6&0&0\\ 0&7/3&0\\ 0&\color{red}{0}&72/21\\ \end{array} \right]\] plugging in the inverse you get : \[ \left[ \begin{array} {ccc} 1&0&0\\ 1/3&1&0\\ -6/21&1/7&1\\ \end{array} \right] \left[\begin{matrix}6 & -2 & -2 \\-2 & 3 & -1 \\2 & -1 & 3\end{matrix}\right] \left[ \begin{array} {ccc} 1&1/3&4/7\\ 0&1&5/7\\ 0&\color{red}{0}&1\\ \end{array} \right] \\~\\ = \left[ \begin{array} {ccc} 6&0&0\\ 0&7/3&0\\ 0&\color{red}{0}&72/21\\ \end{array} \right] \]
thats it !
okay thank u so much man
np :)
Join our real-time social learning platform and learn together with your friends!