jasonmitchell:
The coordinates of the vertices of u25b3ABC are A(1, 1) , B(5, 1) , and C(5, 3) . The coordinates of the vertices of u25b3Au2032Bu2032Cu2032 are Au2032(u22121, u22121) , Bu2032(u22125, u22121) , and Cu2032(u22125, u22123) .
Which statement correctly describes the relationship between u25b3ABC and u25b3Au2032Bu2032Cu2032 ?
A. u25b3ABC is congruent to u25b3Au2032Bu2032Cu2032 because you can map u25b3ABC to u25b3Au2032Bu2032Cu2032 using a translation 2 units to the left and 2 units down, which is a rigid motion.
B. u25b3ABC is congruent to u25b3Au2032Bu2032Cu2032 because you can map u25b3ABC to u25b3Au2032Bu2032Cu2032 using a reflection across the y-axis, which is a rigid motion.
C. u25b3ABC is not congruent to u25b3Au2032Bu2032Cu2032 because there is no sequence of rigid motions that maps u25b3ABC to u25b3Au2032Bu2032Cu2032.
D. u25b3ABC is congruent to u25b3Au2032Bu2032Cu2032 because you can map u25b3ABC to u25b3Au2032Bu2032Cu2032 using a rotation of 180u00b0 about the origin, which is a rigid motion.