werewetrfg
i know how to do it without the definition but not sure how to with it
@zepdrix @.Sam. @iambatman @Compassionate @johnweldon1993
Oh the original? Always fun to go back to basics lol \[\large f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}\] so we have our function \[\large f(x) = x + \sqrt{x}\] so that means \[\large f(x + h) = x + h + \sqrt{x + h}\] so we have \[\large f'(x) = \lim_{h \rightarrow 0} \frac{x + h + \sqrt{x + h} - (x + \sqrt{x})}{h}\] \[\large f'(x) = \lim_{h \rightarrow 0} \frac{\cancel{x} + h + \sqrt{x + h} \cancel{- x} - \sqrt{x}}{h}\] \[\large f'(x) = \lim_{h \rightarrow 0}\frac{h + \sqrt{x + h} -\sqrt{x}}{h}\] Lets break all this up \[\large f'(x) = \lim_{h \rightarrow 0}\frac{h}{h} + \frac{\sqrt{x + h}}{h} -\frac{\sqrt{x}}{h}\] \[\large f'(x) = \lim_{h \rightarrow 0}1 + \frac{\sqrt{x + h} - \sqrt{x}}{h} \] multiply by conjugate \[\large f'(x) = \lim_{h \rightarrow 0}1 + \frac{\sqrt{x + h} - \sqrt{x}}{h} \times \frac{\sqrt{x + h} + \sqrt{x}}{\sqrt{x + h} + \sqrt{x}} \] \[\large f'(x) = \lim_{h \rightarrow 0}1 + \frac{\sqrt{x + h} - \sqrt{x}}{h} \times \frac{\sqrt{x + h} + \sqrt{x}}{\sqrt{x + h} + \sqrt{x}} \] after simplifying we have \[\large f'(x) = \lim_{h \rightarrow 0}1 + \frac{\cancel{h} }{\cancel{h}\sqrt{x + h} + \cancel{h}\sqrt{x}} \] \[\large f'(x) = \lim_{h \rightarrow 0}1 + \frac{1 }{\sqrt{x + h} + \sqrt{x}} \] now it looks like we can let h = 0 \[\large f'(x) = \lim_{h \rightarrow 0}1 + \frac{1 }{\sqrt{x} + \sqrt{x}} \] which is finally!! \[\large f'(x) = 1 + \frac{1 }{2\sqrt{x}} \]
sorry it took a bit, lot to write out >.< lol
haha no problem. thank you so much
Join our real-time social learning platform and learn together with your friends!