Ask your own question, for FREE!
Mathematics 56 Online
kekeman:

More math: https://snipboard.io/WMLxr8.jpg Options: https://snipboard.io/iQ3gRN.jpg

Narad:

\[\sin \theta =-\frac{ 6 }{ 15 }\] \[\cos \theta=-\frac{ \sqrt{189} }{ 15}\] \[\sin 2\theta =2\sin \theta \cos \theta \]

kekeman:

So out of these four options A. 12(√133)/169 B. 4(√189)/75 C. 12/225 D. -√189/169 what would be the exact value of sin2θ=2sinθcosθ?

kekeman:

@surjithayer

surjithayer:

|dw:1682103971347:dw|\[OM=-\sqrt{OP^2-OM^2}=-\sqrt{(15)^2-(-6)^2}=-\sqrt{225-36}=-\sqrt{189}\] \[\cos \theta=\frac{ OM }{ OP }=\frac{ -\sqrt{189} }{ 15 }\] \[\sin \theta=\frac{ -6 }{15 }\] \[\sin 2\theta=2\sin \theta \cos \theta=2\times ?\times?=?\] substitute the values and find the solution.

kekeman:

@surjithayer wrote:
Created with Raphaël-615OMPReply Using Drawing\[OM=-\sqrt{OP^2-OM^2}=-\sqrt{(15)^2-(-6)^2}=-\sqrt{225-36}=-\sqrt{189}\] \[\cos \theta=\frac{ OM }{ OP }=\frac{ -\sqrt{189} }{ 15 }\] \[\sin \theta=\frac{ -6 }{15 }\] \[\sin 2\theta=2\sin \theta \cos \theta=2\times ?\times?=?\] substitute the values and find the solution.
C.) 12/225

surjithayer:

\[\sin 2\theta=2\sin \theta \cos \theta=2\times \frac{ -6 }{ 15 }\times \frac{ -\sqrt{189} }{ 15}=\frac{ 4\sqrt{189} }{ 75 }\]

kekeman:

Omg all I had to do is plug that in to get the answer, smh but thanks!

Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!
Can't find your answer? Make a FREE account and ask your own questions, OR help others and earn volunteer hours!

Join our real-time social learning platform and learn together with your friends!